A Genetically Encoded aza-Michael Acceptor for Covalent Cross-Linking of Protein–Receptor Complexes
نویسندگان
چکیده
Selective covalent bond formation at a protein-protein interface potentially can be achieved by genetically introducing into a protein an appropriately "tuned" electrophilic unnatural amino acid that reacts with a native nucleophilic residue in its cognate receptor upon complex formation. We have evolved orthogonal aminoacyl-tRNA synthetase/tRNACUA pairs that genetically encode three aza-Michael acceptor amino acids, N(ε)-acryloyl-(S)-lysine (AcrK, 1), p-acrylamido-(S)-phenylalanine (AcrF, 2), and p-vinylsulfonamido-(S)-phenylalanine (VSF, 3), in response to the amber stop codon in Escherichia coli. Using an αErbB2 Fab-ErbB2 antibody-receptor pair as an example, we demonstrate covalent bond formation between an αErbB2-VSF mutant and a specific surface lysine ε-amino group of ErbB2, leading to near quantitative cross-linking to either purified ErbB2 in vitro or to native cellular ErbB2 at physiological pH. This efficient biocompatible reaction may be useful for creating novel cell biological probes, diagnostics, or therapeutics that selectively and irreversibly bind a target protein in vitro or in living cells.
منابع مشابه
Genetically Encoding an Electrophilic Amino Acid for Protein Stapling and Covalent Binding to Native Receptors
Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and t...
متن کاملHcRed, a Genetically Encoded Fluorescent Binary Cross-Linking Agent for Cross-Linking of Mitochondrial ATP Synthase in Saccharomyces cerevisiae
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells exp...
متن کاملQuantitative Analysis of T Cell Receptor Complex Interaction Sites Using Genetically Encoded Photo-Cross-Linkers
The T cell receptor (TCR)-cluster of differentiation 3 (CD3) signaling complex plays an important role in initiation of adaptive immune responses, but weak interactions have obstructed delineation of the individual TCR-CD3 subunit interactions during T cell signaling. Here, we demonstrate that unnatural amino acids (UAA) can be used to photo-cross-link subunits of TCR-CD3 on the cell surface. I...
متن کاملGenetically Encoded 2-Aryl-5-carboxytetrazoles for Site-Selective Protein Photo-Cross-Linking
The genetically encoded photo-cross-linkers promise to offer a temporally controlled tool to map transient and dynamic protein-protein interaction complexes in living cells. Here we report the synthesis of a panel of 2-aryl-5-carboxytetrazole-lysine analogs (ACTKs) and their site-specific incorporation into proteins via amber codon suppression in Escherichia coli and mammalian cells. Among five...
متن کاملImmobilization of Subtilisin Carlsberg on Modified Silica Gel by Cross-linking and Covalent Binding Methods
Proteases are important enzymes that their role in various industries is undeniable. However, keeping enzymes stable during its activity in harsh conditions is so important. In this study, protease enzyme was immobilized on the porous silica particles and its stability in different temperatures and pHs was evaluated. First silica particles were aminated by 3-aminopropyltriethoxysilane then the ...
متن کامل